A portable fiber-optic raman spectrometer concept for evaluation of mineral content within enamel tissue
نویسندگان
چکیده
BACKGROUND Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. MATERIAL AND METHODS Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. RESULTS Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. CONCLUSIONS These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words:Enamel, mineral content, raman spectroscopy.
منابع مشابه
Detection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملIdentifying eighteenth century pigments at the Bodleian library using in situ Raman spectroscopy, XRF and hyperspectral imaging
There are multiple challenges in analysing pigments in historic watercolour paintings on paper, and typically noninvasive, in situ methods are required. Recent developments in portable analytical instrumentation have made this more accessible to heritage institutions, but many commercial systems are not optimised for the specific requirements of manuscripts and works on paper. This paper descri...
متن کاملEvaluation of mineral content in healthy permanent human enamel by Raman spectroscopy
BACKGROUND An understanding of tooth enamel mineral content using a clinically viable method is essential since variations in mineralization may serve as an early precursor of a dental health issues, and may predict progression and architecture of decay in addition to assessing the success and effectiveness of the remineralization strategies. MATERIAL AND METHODS Twenty two human incisor teet...
متن کاملIntensity Calibration and Sensitivity Comparisons for CCD/Raman Spectrometers
A calibrated tungsten source combined with a fiber optic was used to correct Raman spectra for instrumental response. With the placement of the fiber output at the Raman sample position, the product of throughput, collection efficiency, quantum efficiency, and sampled area could be assessed. This product is related to a spectrometer figure of merit, which provides a quantitative comparison of s...
متن کاملCorrelation between micro-hardness and mineral content in healthy human enamel
BACKGROUND Enamel is the hardest and the stiffest tissue in the human body. The enamel undergoes multidirectional stresses, withstands multimillion chewing cycles, all while protecting the internal dentin and pulp from damage due to mechanical overload and exposure to the harsh chemical environment of the mouth. Raman spectroscopy allows to study enamel mineral content in a non-destructive and ...
متن کامل